

Getting started

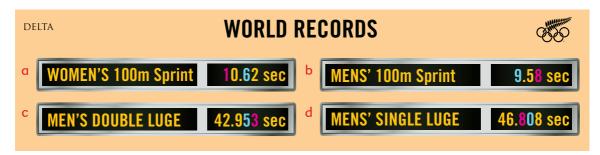
Check up on level 3

If you can answer all of these questions, you are ready for this chapter.

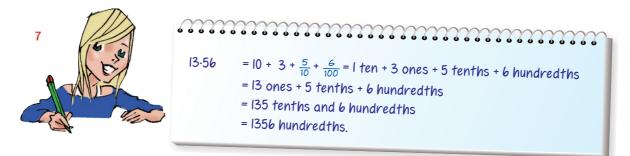
TRAVELLERS' REST
Only 5.65 km and only
\$5.65 for coffee and cake.

Coffee and cake is only five point sixty five km till we get a drink and something to eat.

KIMZKAR


Kim and Kate have made mistakes in reading the decimal numbers.

Explain how reading decimal numbers is different for measurement and money.


- 2 Write these decimals using digits.
 - a five point seven two
 - c seventy point eight zero three
 - e forty point eight nine five zero
- b five dollars and five cents
- d fifteen thousand and six point zero four two
- f thirty five thousand point zero zero five

Put these world record times on a copy of a place value chart.

- What is the place value of the pink digits in each of the numbers in question 3?
- 5 What is the place value of the blue digits in each of the numbers in question 3?
- 6 How many tenths are there altogether in each of the numbers in question 3?

Write these in all the different ways Jess did.

- a 45.6
- b 16.89

Rich tasks for this chapter

You might do these at the end, start or middle of the chapter or as homework or extension.

Decimal darts

- Make your own dartboard with decimals instead of whole numbers.
- Make a poster, or similar, to explain the rules of your darts game. Make sure you have to add and subtract decimals as you play.
- Play with some classmates.

2

It's a record!

Events at the Olympics and Commonwealth Games are timed and measured very accurately.

- Choose three events that interest you.
 Research the results from your chosen events in the last five Olympic (or Commonwealth) games.
- Make a poster/presentation/booklet that:
 - explains how each of your events was measured and the level of accuracy
 - shows tables of the differences between each of the place getters for each of your events
 - has a time-series graph showing how the Olympic (Commonwealth) records in your events have changed
 - has some conclusions about how results have changed and why this might be.

Famous for what?

 Choose a famous mathematician who had something to do with decimals.

Examples Archimedes, Stevin, Napier, Dewey

- Draw a timeline of their life in years and months indicating all the significant events and discoveries.
- Share and display your research.

Decimal place value

Reading and writing decimals

13.64 is read as "thirteen point six four". We write "forty point six eight three" as 40.683.

Decimal place value

Tens	Ones (tenths	hundredths	thousandths
7	8	5	0	4

In 78.504 there are 7 tens

78 ones

785 tenths

7850 hundredths

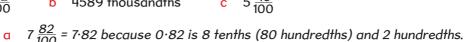
78504 thousandths

78.504 can be written as

78 and 5 tenths and 4 thousandths

or 78 and $\frac{5}{10}$ and $\frac{4}{1000}$ or 78 $\frac{504}{1000}$

This is how many thousandths there are ALTOGETHER if you split up the 7 tens, 8 ones and 5 tenths into thousandths and add them to the 4 thousandths.

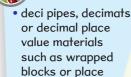

Discussion

• What is the purpose of the 0 in 78.504?

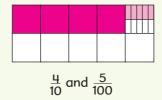
Example

Write these as decimals.

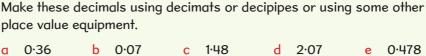
- a $7\frac{82}{100}$
- b 4589 thousandths
- c 5 40



- b 4589 thousandths = 4.589 because 4000 thousandths is 4 wholes and 500 thousandths is 5 tenths and 80 thousandths is 8 hundredths.
- c $5\frac{40}{100} = 5.40$ or 5.4 because $\frac{40}{100}$ is the same as $\frac{4}{10}$.



Practical



value blocks

1 Jess made 0.45 in two different ways.

 $\frac{4}{10}$ and $\frac{5}{100}$

Write each decimal using fractions like Jess did.